3.314 \(\int \frac{\sqrt{a+b x^2+c x^4}}{x (d+e x^2)} \, dx\)

Optimal. Leaf size=186 \[ -\frac{\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 d e}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 d}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{2 e} \]

[Out]

-(Sqrt[a]*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*d) + (Sqrt[c]*ArcTanh[(b + 2*c*x^2)/(
2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(2*e) - (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)
*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*d*e)

________________________________________________________________________________________

Rubi [A]  time = 0.255888, antiderivative size = 186, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {1251, 895, 724, 206, 843, 621} \[ -\frac{\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 d e}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 d}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{2 e} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2 + c*x^4]/(x*(d + e*x^2)),x]

[Out]

-(Sqrt[a]*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*d) + (Sqrt[c]*ArcTanh[(b + 2*c*x^2)/(
2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(2*e) - (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)
*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*d*e)

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 895

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)/(((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))), x_Symbol] :> Dist[(c
*d^2 - b*d*e + a*e^2)/(e*(e*f - d*g)), Int[(a + b*x + c*x^2)^(p - 1)/(d + e*x), x], x] - Dist[1/(e*(e*f - d*g)
), Int[(Simp[c*d*f - b*e*f + a*e*g - c*(e*f - d*g)*x, x]*(a + b*x + c*x^2)^(p - 1))/(f + g*x), x], x] /; FreeQ
[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && Fra
ctionQ[p] && GtQ[p, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x^2+c x^4}}{x \left (d+e x^2\right )} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{\sqrt{a+b x+c x^2}}{x (d+e x)} \, dx,x,x^2\right )\\ &=-\frac{\operatorname{Subst}\left (\int \frac{-b d+a e-c d x}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 d}+\frac{a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 d}\\ &=-\frac{a \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x^2}{\sqrt{a+b x^2+c x^4}}\right )}{d}+\frac{c \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 e}-\frac{1}{2} \left (-b+\frac{c d}{e}+\frac{a e}{d}\right ) \operatorname{Subst}\left (\int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )\\ &=-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 d}+\frac{c \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{e}-\left (b-\frac{c d}{e}-\frac{a e}{d}\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x^2}{\sqrt{a+b x^2+c x^4}}\right )\\ &=-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 d}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{2 e}-\frac{\sqrt{c d^2-b d e+a e^2} \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x^2}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x^2+c x^4}}\right )}{2 d e}\\ \end{align*}

Mathematica [A]  time = 0.157293, size = 179, normalized size = 0.96 \[ -\frac{\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+b d-b e x^2+2 c d x^2}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )-\sqrt{c} d \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )+\sqrt{a} e \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 d e} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^2 + c*x^4]/(x*(d + e*x^2)),x]

[Out]

-(Sqrt[a]*e*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])] - Sqrt[c]*d*ArcTanh[(b + 2*c*x^2)/(2*Sq
rt[c]*Sqrt[a + b*x^2 + c*x^4])] + Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + 2*c*d*x^2 - b*e*x^2)/(2*S
qrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*d*e)

________________________________________________________________________________________

Maple [B]  time = 0.016, size = 851, normalized size = 4.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(1/2)/x/(e*x^2+d),x)

[Out]

1/2/d*(c*x^4+b*x^2+a)^(1/2)+1/4/d*b*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))/c^(1/2)-1/2/d*a^(1/2)*ln((
2*a+b*x^2+2*a^(1/2)*(c*x^4+b*x^2+a)^(1/2))/x^2)-1/2/d*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^
2)/e^2)^(1/2)-1/4/d*ln((1/2*(b*e-2*c*d)/e+c*(x^2+d/e))/c^(1/2)+(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b
*d*e+c*d^2)/e^2)^(1/2))/c^(1/2)*b+1/2/e*ln((1/2*(b*e-2*c*d)/e+c*(x^2+d/e))/c^(1/2)+(c*(x^2+d/e)^2+(b*e-2*c*d)/
e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^(1/2)+1/2/d/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c
*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*
e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*a-1/2/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+
(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+
c*d^2)/e^2)^(1/2))/(x^2+d/e))*b+1/2/e^2*d/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2
*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)
/e^2)^(1/2))/(x^2+d/e))*c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2} + a}}{{\left (e x^{2} + d\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x/(e*x^2+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/((e*x^2 + d)*x), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x/(e*x^2+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x^{2} + c x^{4}}}{x \left (d + e x^{2}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(1/2)/x/(e*x**2+d),x)

[Out]

Integral(sqrt(a + b*x**2 + c*x**4)/(x*(d + e*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2} + a}}{{\left (e x^{2} + d\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x/(e*x^2+d),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/((e*x^2 + d)*x), x)